Tentang Data Mining

Apa sebenarnya yang memotivasi datamining dan mengapa data mining begitu penting ?

Alasan utama mengapa data mining sangat menarik perhatian industri informasi dalam beberapa tahun belakangan ini adalah karena tersedianya data dalam jumlah yang besar dan semakin besarnya kebutuhan untuk mengubah data tersebut menjadi informasi dan pengetahuan yang berguna.

Data mining adalah kegiatan mengekstraksi atau menambang pengetahuan dari data yang berukuran/berjumlah besar, informasi inilah yang nantinya sangat berguna untuk pengembangan. Dimana langkah-langkah untuk melakukan data mining adalah sebagai berikut :

step-datamining

– Data cleaning (untuk menghilangkan noise data yang tidak konsisten) Data integration (di mana sumber data yang terpecah dapat disatukan)

– Data selection (di mana data yang relevan dengan tugas analisis dikembalikan ke dalam database)

– Data transformation (di mana data berubah atau bersatu menjadi bentuk yang tepat untuk menambang dengan ringkasan performa atau operasi agresi)

– Data mining (proses esensial di mana metode yang intelejen digunakan untuk mengekstrak pola data)

– Pattern evolution (untuk mengidentifikasi pola yang benar-benar menarik yang mewakili pengetahuan berdasarkan atas beberapa tindakan yang menarik)

– Knowledge presentation (di mana gambaran teknik visualisasi dan pengetahuan digunakan untuk memberikan pengetahuan yang telah ditambang kpada user).

Arsitektur dari data mining yang khas memiliki beberapa komponen utama yaitu :

– Database, data warehouse, atau tempat penyimpanan informasi lainnya.

– Server database atau data warehouse.

– Knowledge base

– Data mining engine.

– Pattern evolution module.

– Graphical user interface.

Ada beberapa jenis data dalam data mining yaitu :

– Relation Database : Sebuah sistem database, atau disebut juga database management system (DBMS), mengandung sekumpulan data yang saling berhubungan, dikenal sebagai sebuah database, dan satu set program perangkat lunak untuk mengatur dan mengakses data tersebut.

– Data Warehouse : Sebuah data warehouse merupakan sebuah ruang penyimpaan informasi yang terkumpul dari beraneka macam sumber, disimpan dalam skema yang menyatu, dan biasanya terletak pada sebuah site.

Kemudian pola seperti apa yang dapat ditambang ?

Kegunaan data mining adalah untuk menspesifikasikan pola yang harus ditemukan dalam tugas data mining. Secara umum tugas data mining dapat diklasifikasikan ke dalam dua kategori: deskriptif dan prediktif. Tugas menambang secara deskriptif adalah untuk mengklasifikasikan sifat umum suatu data di dalam database. Tugas data mining secara prediktif adalah untuk mengambil kesimpulan terhadap data terakhir untuk membuat prediksi.

Konsep/Class Description

Data dapat diasosiasikan dengan pembagian class atau konsep. Untuk contohnya, ditoko All Electronics, pembagian class untuk barang yang akan dijual termasuk komputer dan printer, dan konsep untuk konsumen adalah big Spenders dan budget Spender. Hal tersebut sangat berguna untuk menggambarkan pembagian class secara individual dan konsep secara ringkas, laporan ringkas, dan juga pengaturan harga. Deskripsi suatu class atau konsep seperti itu disebut class/concept descripition.

Association Analysis

Association analysis adalah penemuan association rules yang menunjukkan nilai kondisi suatu attribute yang terjadi bersama-sama secara terus-menerus dalam memmberikan set data. Association analysis secara luas dipakai untuk market basket atau analisa data transaksi.

Klasifikasi dan Predikasi

Klasifikasi dan prediksi mungkin perlu diproses oleh analisis relevan, yang berusaha untuk mengidentifikasi atribut-atribut yang tidak ditambahkan pada proses klasifikasi dan prediksi. Atribut-atribut ini kemudian dapat di keluarkan.

Cluster Analysis

Tidak seperti klasifikasi dan prediksi, yang menganalisis objek data dengan kelas yang terlabeli, clustering menganalisis objek data tanpa mencari keterangan pada label kelas yang diketahui. Pada umumnya, label kelas tidak ditampilkan di dalam latihan data simply, karena mereka tidak tahu bagaimana memulainya. Clustering dapat digunakan untuk menghasilkan label-label.

Outlier Analysis

§ Outlier dapat dideteksi menggunakan test yang bersifat statistik yang mengambil sebuah distribusi atau probabilitas model untuk data, atau menggunakan langkah-langkah jarak jauh di mana objek yang penting jauh dari cluster lainnya dianggap outlier.

§ Sebuah database mungkin mengandung objek data yang tidak mengikuti tingkah laku yang umum atau model dari data. data ini disebut outlier.

Evolution Analysis

Data analisa evolusi menggambarkan ketetapan model atau kecenderungan objek yang memiliki kebiasaan berubah setiap waktu. Meskipun ini mungkin termasuk karakteristik, diskriminasi, asosiasi, klasifikasi, atau clustering data berdasarkan waktu, kelebihan yang jelas seperti analisa termasuk analisa data time-series, urutan atau pencocockkan pola secara berkala, dan kesamaan berdasarkan analisa data.

Untuk melakukan data mining yang baik ada beberapa persoalan utama yaitu menyangkut metodologi mining dan interaksi user, performance dan perbedaan tipe database. Hal inilah yang sering kali dihadapi disaat kita ingin melakukan data mining.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s